Photo AI

(a) Write each of the following complex numbers in the form $a + bi$, where $i^2 = -1$ - Leaving Cert Mathematics - Question 3 - 2013

Question icon

Question 3

(a)-Write-each-of-the-following-complex-numbers-in-the-form-$a-+-bi$,-where-$i^2-=--1$-Leaving Cert Mathematics-Question 3-2013.png

(a) Write each of the following complex numbers in the form $a + bi$, where $i^2 = -1$. (i) $z_1 = (3 + 2i)(2 - 5i)$ (ii) $z_2 = (5 + 4i)(17 - 13i) - (5 + 3i)(17... show full transcript

Worked Solution & Example Answer:(a) Write each of the following complex numbers in the form $a + bi$, where $i^2 = -1$ - Leaving Cert Mathematics - Question 3 - 2013

Step 1

(i) $z_1 = (3 + 2i)(2 - 5i)$

96%

114 rated

Answer

To simplify z1z_1, we apply the distributive property (FOIL method):
z1=3(2)+3(5i)+2i(2)+2i(5i)z_1 = 3(2) + 3(-5i) + 2i(2) + 2i(-5i)

This expands to:
z1=615i+4i10i2z_1 = 6 - 15i + 4i - 10i^2

Recall that i2=1i^2 = -1. So, we substitute:
z1=615i+4i+10z_1 = 6 - 15i + 4i + 10

Combining like terms gives:
z1=(6+10)+(15+4)i=1611iz_1 = (6 + 10) + (-15 + 4)i = 16 - 11i.

Step 2

(ii) $z_2 = (5 + 4i)(17 - 13i) - (5 + 3i)(17 - 13i)$

99%

104 rated

Answer

Calculating the first part:
z2=(5+4i)(1713i)z_2 = (5 + 4i)(17 - 13i)

Using the distributive property:
=8565i+68i52i2= 85 - 65i + 68i - 52i^2
=85+52+3i=137+3i= 85 + 52 + 3i = 137 + 3i.

Now, calculating the second part:
=(5+3i)(1713i)= (5 + 3i)(17 - 13i)
= 8565i+51i39i285 - 65i + 51i - 39i^2
=85+39+(14)i=12414i= 85 + 39 + (-14)i = 124 - 14i.

Subtracting gives:
z2=(137+3i)(12414i)=13+17iz_2 = (137 + 3i) - (124 - 14i) = 13 + 17i.

Step 3

(iii) $z_3 = \left( \frac{5}{2} + \frac{7}{2} i \right)^2 - \left( \frac{5}{2} - \frac{1}{2} i \right)^2$

96%

101 rated

Answer

For the first term:
(52+72i)2=254+2(52)(72)i+(72i)2=254+352i494=244+352i=6+352i.\left( \frac{5}{2} + \frac{7}{2} i \right)^2 = \frac{25}{4} + 2 \cdot (\frac{5}{2})(\frac{7}{2}) i + (\frac{7}{2} i)^2 = \frac{25}{4} + \frac{35}{2} i - \frac{49}{4} = -\frac{24}{4} + \frac{35}{2} i = -6 + \frac{35}{2} i.

For the second term:
(5212i)2=2542(52)(12)i+(12i)2=25452i14=24452i=652i.\left( \frac{5}{2} - \frac{1}{2} i \right)^2 = \frac{25}{4} - 2 \cdot (\frac{5}{2})(\frac{1}{2}) i + (\frac{1}{2} i)^2 = \frac{25}{4} - \frac{5}{2} i - \frac{1}{4} = \frac{24}{4} - \frac{5}{2} i = 6 - \frac{5}{2} i.

Now, we subtract the two results to find z3z_3:
z3=(6+352i)(652i)=12+20i.z_3 = (-6 + \frac{35}{2} i) - (6 - \frac{5}{2} i) = -12 + 20i.

Step 4

(iv) $z_4 = 1 + i + i^2 + i^3$

98%

120 rated

Answer

Breaking this down:
Recall that i2=1i^2 = -1 and i3=ii^3 = -i,
Therefore:
z4=1+i1i=0+0i=0.z_4 = 1 + i - 1 - i = 0 + 0i = 0.

Step 5

(b) Which of $z_1$ and $z_2$ above is farther from 0 on an Argand diagram?

97%

117 rated

Answer

To determine which complex number is farther from the origin, we calculate the modulus of each.
For z1=1611iz_1 = 16 - 11i, the modulus is:
z1=(16)2+(11)2=256+121=377|z_1| = \sqrt{(16)^2 + (-11)^2} = \sqrt{256 + 121} = \sqrt{377}.

For z2=13+17iz_2 = 13 + 17i, the modulus is:
z2=(13)2+(17)2=169+289=458|z_2| = \sqrt{(13)^2 + (17)^2} = \sqrt{169 + 289} = \sqrt{458}.

Thus, z2>z1|z_2| > |z_1|, indicating that z2z_2 is farther from 0 on the Argand diagram.

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other Leaving Cert Mathematics topics to explore

;