Photo AI

5. (a) Prove that \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \) - Leaving Cert Mathematics - Question 5 - 2015

Question icon

Question 5

5.-(a)-Prove-that-\(-\tan(A-+-B)-=-\frac{\tan-A-+-\tan-B}{1---\tan-A-\tan-B}-\)-Leaving Cert Mathematics-Question 5-2015.png

5. (a) Prove that \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \). (b) Find all the values of \( x \) for which \( \sin(3x) = \frac{\sqrt{3}}{2} \), \... show full transcript

Worked Solution & Example Answer:5. (a) Prove that \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \) - Leaving Cert Mathematics - Question 5 - 2015

Step 1

Prove that \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \)

96%

114 rated

Answer

To prove the identity, we start by using the definition of tangent in terms of sine and cosine:

[ \tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)} ]

Using the sine and cosine addition formulas:

[ \sin(A + B) = \sin A \cos B + \cos A \sin B ] [ \cos(A + B) = \cos A \cos B - \sin A \sin B ]

We can rewrite ( \tan(A + B) ) as:

[ \tan(A + B) = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B} ]

Now we will transform the right side of the original equation:

[ \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}}
]

Combining into a single fraction:

[ = \frac{\frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}}{\frac{\cos A \cos B - \sin A \sin B}{\cos A \cos B}} = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B} ]

This aligns with the left side as shown:

[ \tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)} ]

Thus, we have proved the identity successfully.

Step 2

Find all the values of \( x \) for which \( \sin(3x) = \frac{\sqrt{3}}{2} \)

99%

104 rated

Answer

To solve the equation ( \sin(3x) = \frac{\sqrt{3}}{2} ), we recognize the angles where sine is ( \frac{\sqrt{3}}{2} ):

  • ( 60^\circ ) or ( 120^\circ ).

So, we can write:
[ 3x = 60^\circ + n \cdot 360^\circ , (n \in \mathbb{Z}) ] [ 3x = 120^\circ + n \cdot 360^\circ , (n \in \mathbb{Z}) ]

Next, solving for ( x ):

From ( 3x = 60^\circ + n \cdot 360^\circ ):
[ x = 20^\circ + n \cdot 120^\circ, n \in \mathbb{Z} ]

From ( 3x = 120^\circ + n \cdot 360^\circ ):
[ x = 40^\circ + n \cdot 120^\circ, n \in \mathbb{Z} ]

Now, we can find values of ( x ) within ( 0 \leq x \leq 360 ):

  1. For ( x = 20^\circ + n \cdot 120^\circ ):
    • ( n = 0 ): ( x = 20^\circ )
    • ( n = 1 ): ( x = 140^\circ )
    • ( n = 2 ): ( x = 260^\circ )
  2. For ( x = 40^\circ + n \cdot 120^\circ ):
    • ( n = 0 ): ( x = 40^\circ )
    • ( n = 1 ): ( x = 160^\circ )
    • ( n = 2 ): ( x = 280^\circ )

Thus, the solutions for ( x ) in the specified range are:
( 20^\circ, 40^\circ, 140^\circ, 160^\circ, 260^\circ, 280^\circ ).

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other Leaving Cert Mathematics topics to explore

;