Photo AI

The diagram shows the triangles BCD and ABD, with some measurements given - Leaving Cert Mathematics - Question 5 - 2015

Question icon

Question 5

The-diagram-shows-the-triangles-BCD-and-ABD,-with-some-measurements-given-Leaving Cert Mathematics-Question 5-2015.png

The diagram shows the triangles BCD and ABD, with some measurements given. (a) (i) Find | BC |, correct to two decimal places. (ii) Find the area of the triangle B... show full transcript

Worked Solution & Example Answer:The diagram shows the triangles BCD and ABD, with some measurements given - Leaving Cert Mathematics - Question 5 - 2015

Step 1

Find | BC |, correct to two decimal places.

96%

114 rated

Answer

To find | BC |, we can use the Law of Sines:

BCsin(42)=16sin(110)\frac{|BC|}{\sin(42^\circ)} = \frac{16}{\sin(110^\circ)}

Rearranging gives:

BC=16sin(42)sin(110)|BC| = \frac{16 \cdot \sin(42^\circ)}{\sin(110^\circ)}

Now calculating:

  • Calculate (\sin(42^\circ)) and (\sin(110^\circ)):
    • (\sin(42^\circ) \approx 0.6691)
    • (\sin(110^\circ) \approx 0.9397)

Substituting back in:

BC160.66910.939711.39m|BC| \approx \frac{16 \cdot 0.6691}{0.9397} \approx 11.39 m

Thus, | BC | = 11.39 m (to two decimal places).

Step 2

Find the area of the triangle BCD, correct to two decimal places.

99%

104 rated

Answer

To find the area of triangle BCD, we first need to calculate angle (\angle DBC):

DBC=180(42+110)=28\angle DBC = 180^\circ - (42^\circ + 110^\circ) = 28^\circ

Now applying the area formula for a triangle:

A=12absinCA = \frac{1}{2} a b \sin C

Where:

  • a = 16 m
  • b = |BC| \approx 11.39 m
  • C = \angle DBC = 28^\circ

Calculating the area:

A=121611.39sin(28)A = \frac{1}{2} \cdot 16 \cdot 11.39 \cdot \sin(28^\circ)

After calculating:

  • (\sin(28^\circ) \approx 0.4695)

Substituting gives:

A121611.390.469542.78m2A \approx \frac{1}{2} \cdot 16 \cdot 11.39 \cdot 0.4695 \approx 42.78 m^2

Thus, the area of triangle BCD is 42.78 m² (to two decimal places).

Step 3

Find | AB |, correct to two decimal places.

96%

101 rated

Answer

To find | AB |, we use the Law of Cosines:

AB2=a2+b22abcosA|AB|^2 = a^2 + b^2 - 2ab \cos A

Where:

  • a = 10 m
  • b = 16 m
  • A = \angle BDA = 63^\circ + 42^\circ = 105^\circ

Substituting in the values:

AB2=102+16221016cos(105)|AB|^2 = 10^2 + 16^2 - 2 \cdot 10 \cdot 16 \cdot \cos(105^\circ)

Calculating (\cos(105^\circ) \approx -0.2588):

AB2=100+256+210160.2588|AB|^2 = 100 + 256 + 2 \cdot 10 \cdot 16 \cdot 0.2588

Resulting in:

AB2=273.1784|AB|^2 = 273.1784

Thus:

AB273.178416.53m|AB| \approx \sqrt{273.1784} \approx 16.53 m

Therefore, | AB | = 16.53 m (to two decimal places).

Join the Leaving Cert students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

Other Leaving Cert Mathematics topics to explore

;